Schools

October 16, 2017

1 Read in the data

```
In [1]: import pandas
    import numpy
    import re
    data_files = [
        "ap_2010.csv",
        "class_size.csv",
        "demographics.csv",
        "graduation.csv",
        "hs_directory.csv",
        "sat_results.csv"
    ]
    data = {}
    for f in data_files:
        d = pandas.read_csv("schools/{0}".format(f))
        data[f.replace(".csv", "")] = d
```


2 Read in the surveys

```
In [2]: all_survey = pandas.read_csv("schools/survey_all.txt",
                                    delimiter="\t", encoding='windows-1252')
    d75_survey = pandas.read_csv("schools/survey_d75.txt",
                                    delimiter="\t", encoding='windows-1252')
    survey = pandas.concat([all_survey, d75_survey], axis=0)
    survey["DBN"] = survey["dbn"]
    survey_fields = [
        "DBN",
        "rr_s",
        "rr_t",
        "rr_p",
        "N_S",
```

```
    "N_t",
    "N_p",
    "saf_p_11",
    "com_p_11",
    "eng_p_11",
    "aca_p_11",
    "saf_t_11",
    "com_t_11",
    "eng_t_10",
    "aca_t_11",
    "saf_s_11",
    "com_s_11",
    "eng_s_11",
    "aca_s_11",
    "saf_tot_11",
    "com_tot_11",
    "eng_tot_11",
    "aca_tot_11",
]
survey = survey.loc[:,survey_fields]
data["survey"] = survey
```


3 Add DBN columns

```
In [3]: data["hs_directory"]["DBN"] = data["hs_directory"]["dbn"]
def pad_csd(num):
    string_representation = str(num)
    if len(string_representation) > 1:
        return string_representation
    else:
        return "0" + string_representation
data["class_size"]["padded_csd"] = data["class_size"]["CSD"].apply(pad_csd)
data["class_size"]["DBN"] = data["class_size"]["padded_csd"] + \
    data["class_size"]["SCHOOL CODE"]
```


4 Convert columns to numeric

In [4]: cols = ['SAT Math Avg. Score', 'SAT Critical Reading Avg. Score', 'SAT Writing Avg. Score']
for c in cols:
data["sat_results"][c] = pandas.to_numeric(data["sat_results"][c], errors="coerce")
data['sat_results']['sat_score'] = data['sat_results'][cols[0]] + \} data['sat_results'][cols[1]] + \}

```
    data['sat_results'][cols[2]]
def find_lat(loc):
    coords = re.findall("\(.+, .+\)", loc)
    lat = coords[0].split(",")[0].replace("(", "")
    return lat
def find_lon(loc):
    coords = re.findall("\(.+, .+\)", loc)
    lon = coords[0].split(",")[1].replace(")", "").strip()
    return lon
data["hs_directory"]["lat"] = data["hs_directory"]["Location 1"] \
            .apply(find_lat)
data["hs_directory"]["lon"] = data["hs_directory"]["Location 1"] \
            .apply(find_lon)
data["hs_directory"]["lat"] = pandas.to_numeric(
    data["hs_directory"]["lat"], errors="coerce")
data["hs_directory"]["lon"] = pandas.to_numeric(
    data["hs_directory"]["lon"], errors="coerce")
```


5 Condense datasets

```
In [5]: class_size = data["class_size"]
class_size = class_size[class_size["GRADE "] == "09-12"]
class_size = class_size[class_size["PROGRAM TYPE"] == "GEN ED"]
class_size = class_size.groupby("DBN").agg(numpy.mean)
class_size.reset_index(inplace=True)
data["class_size"] = class_size
data["demographics"] = data["demographics"] \
    [data["demographics"]["schoolyear"] == 20112012]
data["graduation"] = data["graduation"][data["graduation"]["Cohort"]
    == "2006"]
data["graduation"] = data["graduation"][data["graduation"]["Demographic"]
                                    == "Total Cohort"]
```


6 Convert AP scores to numeric

In [6]: cols $=$ ['AP Test Takers ', 'Total Exams Taken',
'Number of Exams with scores 34 or 5']
for col in cols:

```
data["ap_2010"][col] = pandas.to_numeric(data["ap_2010"][col],
    errors="coerce")
```


7 Combine the datasets

```
In [7]: combined = data["sat_results"]
combined = combined.merge(data["ap_2010"], on="DBN", how="left")
combined = combined.merge(data["graduation"], on="DBN", how="left")
to_merge = ["class_size", "demographics", "survey", "hs_directory"]
for m in to_merge:
        combined = combined.merge(data[m], on="DBN", how="inner")
combined = combined.fillna(combined.mean())
combined = combined.fillna(0)
```


8 Add a school district column for mapping

```
In [8]: def get_first_two_chars(dbn):
```

 return dbn[0:2]
    ```
combined["school_dist"] = combined["DBN"].apply(get_first_two_chars)
```


9 Find correlations

```
In [9]: correlations = combined.corr()
            correlations = correlations["sat_score"]
    print(correlations)
SAT Critical Reading Avg. Score 0.986820
SAT Math Avg. Score 0.972643
SAT Writing Avg. Score 0.987771
sat_score 1.000000
AP Test Takers 0.523140
Total Exams Taken 0.514333
Number of Exams with scores 3 4 or 5 0.463245
Total Cohort 0.325144
CSD 0.042948
NUMBER OF STUDENTS / SEATS FILLED 0.394626
NUMBER OF SECTIONS 0.362673
AVERAGE CLASS SIZE 0.381014
SIZE OF SMALLEST CLASS 0.249949
SIZE OF LARGEST CLASS 0.314434
SCHOOLWIDE PUPIL-TEACHER RATIO NaN
```


10 Plotting Survey Correlations

$\begin{aligned} \text { In [10]: } & \text { omatplotlib inline } \\ & \text { combined.corr()["sat_score"][survey_fields].plot.bar(); }\end{aligned}$

There are high correlations between N_s, N_t, N_p and sat_score. Since these columns are correlated with total_enrollment, it makes sense that they would be high.

It is more interesting that rr_s, the student response rate, or the percentage of students that completed the survey, correlates with sat_score. This might make sense because students who are more likely to fill out surveys may be more likely to also be doing well academically.

How students and teachers percieved safety (saf_t_11 and saf_s_11) correlate with sat_score. This make sense, as it's hard to teach or learn in an unsafe environment.

The last interesting correlation is the aca_s_11, which indicates how the student perceives academic standards, correlates with sat_score, but this is not true for aca_t_11, how teachers perceive academic standards, or aca_p_11, how parents perceive academic standards.

11 Exploring Safety

In [11]: combined.plot.scatter('saf_s_11', 'sat_score');

There appears to be a correlation between SAT scores and safety, although it isn't that strong. It looks like there are a few schools with extremely high SAT scores and high safety scores. There are a few schools with low safety scores and low SAT scores. No school with a safety score lower than 6.5 has an average SAT score higher than around 1500.

12 Plotting Safety

```
In [12]: import matplotlib.pyplot as plt
    from mpl_toolkits.basemap import Basemap
    import numpy as np
    districts = combined.groupby("school_dist").agg(np.mean)
    districts.reset_index (inplace=True)
    m = Basemap(
        projection='merc',
        llcrnrlat=40.496044,
        urcrnrlat=40.915256,
        llcrnrlon=-74.255735,
        urcrnrlon=-73.700272,
        resolution='i'
)
    m.drawmapboundary(fill_color = "#85A6D9")
    m.drawcoastlines(color = "#6D5F47", linewidth=.4)
```

```
m.drawrivers(color = "#6D5F47", linewidth=.4)
m.fillcontinents(color='white',lake_color='#85A6D9')
longitudes = districts["lon"].tolist()
latitudes = districts["lat"].tolist()
m.scatter(longitudes, latitudes, s=50, zorder=2, latlon=True,
    c=districts["saf_s_11"], cmap="summer")
plt.show()
```


It looks like Upper Manhattan and parts of Queens and the Bronx tend to have lower safety scores, whereas Brooklyn has high safety scores.

13 Racial differences in SAT Score

```
In [13]: RF = ['white_per', 'asian_per', 'black_per', 'hispanic_per']
    combined.corr()["sat_score"][RF].plot.bar();
```


It looks like a higher percentage of white or asian students at a school correlates positively with sat score, whereas a higher percentage of black or hispanic students correlates negatively with sat score. This may be due to a lack of funding for schools in certain areas, which are more likely to have a higher percentage of black or hispanic students.

In [14]: combined.plot.scatter('hispanic_per', 'sat_score');

The schools listed above appear to primarily be geared towards recent immigrants to the US. These schools have a lot of students who are learning English, which would explain the lower SAT scores.

```
In [16]: print(combined[(combined["hispanic_per"] < 10) &
    (combined["sat_score"] > 1800)]["SCHOOL NAME"])
```

STUYVESANT HIGH SCHOOL
BRONX HIGH SCHOOL OF SCIENCE BROOKLYN TECHNICAL HIGH SCHOOL
QUEENS HIGH SCHOOL FOR THE SCIENCES AT YORK CO... StAten ISLAND technical high school

```
Name: SCHOOL NAME, dtype: object
```

Many of the schools above appear to be specialized science and technology schools that receive extra funding, and only admit students who pass an entrance exam. This doesn't explain the low hispanic_per, but it does explain why their students tend to do better on the SAT - they are students from all over New York City who did well on a standardized test.

14 Gender Differences in SAT Score

In [17]: TG = ["male_per", "female_per"] combined.corr()["sat_score"][TG].plot.bar();

In the plot above, we can see that a high percentage of females at a school positively correlates with SAT score, whereas a high percentage of males at a school negatively correlates with SAT score. Neither correlation is extremely strong.

In [18]: combined.plot.scatter("female_per", "sat_score");

Based on the scatterplot, there doesn't seem to be any real correlation between sat_score and female_per. However, there is a cluster of schools with a high percentage of females (60 to 80), and high SAT scores.

```
In [19]: print(combined[(combined["female_per"] > 60)
    & (combined["sat_score"] > 1700)]["SCHOOL NAME"])
5
26
60
61 FIORELLO H. LAGUARDIA HIGH SCHOOL OF MUSIC & A...
302
Name: SCHOOL NAME, dtype: object
```

These schools appears to be very selective liberal arts schools that have high academic standards.

15 AP Exams vs SAT Scores

```
In [32]: combined['ap_per'] = combined["AP Test Takers "] / \
    combined["total_enrollment"]
    combined.plot.scatter(x='ap_per', y='sat_score');
```


It looks like there is a relationship between the percentage of students in a school who take the AP exam, and their average SAT scores. It's not an extremely strong correlation, though.

16 Average Class Size vs SAT Scores

In [21]: combined.plot.scatter('AVERAGE CLASS SIZE', 'sat_score');

One can conclude from the graph that the larger the class size is, the higher the SAT score is. This is not a very strong correlation nor is this intuitive. One might guess that a smaller class size means students recieves more attention from a teacher. But one can also say that the larger class size hass a teacher who has very effective teaching methods.

17 Passed AP Exams vs SAT Scores

In [22]: combined.plot.scatter('Number of Exams with scores 34 or 5', 'sat_score')


```
In [23]: print(combined[(combined['Number of Exams with scores 3 4 or 5'] > 2000)
    & (combined['sat_score'] > 1800)]["SCHOOL NAME"])
37
151 BRONX HIGH SCHOOL OF SCIENCE
187 BROOKLYN TECHNICAL HIGH SCHOOL
Name: SCHOOL NAME, dtype: object
```

The above three schools have appeared earlier in this analysis and these schools have high academic standards. With that in mind, it would make sense that they have a high number of AP exams being passed (at least a 3 is required to pass) and a high SAT score. In addition,

```
In [24]: combined.plot.scatter('sped_percent', 'sat_score');
```


It would make sense that scores with a higher special education percentage would have a lower SAT score. The SAT is a exam, which measures a student's college readiness. If the student has difficulty reading, writing, or doing arithmetic (many of Sp. Ed students do,) it could explain low SAT scores.

```
In [25]: print(combined[(combined['sped_percent'] > 30) &
    (combined['sat_score'] < 1300)]["SCHOOL NAME"])
6 47 THE AMERICAN SIGN LANGUAGE AND ENGLISH SECO...
39
83
207
    AUTOMOTIVE HIGH SCHOOL
```

Name: SCHOOL NAME, dtype: object

The above schools either are geared toward special education students or mainstreams special education students, which puts undue stress on the general education teacher. In the case of Automotive High School, these students genuinely have no interest going to college when they can be a mechanic instead. Also, academics is often an afterthought at Automotive HS.

```
In [26]: print(combined[(combined['sped_percent'] < 12) &
    (combined['sat_score'] < 1000)]["SCHOOL NAME"])
91
    INTERNATIONAL COMMUNITY HIGH SCHOOL
125 ACADEMY FOR LANGUAGE AND TECHNOLOGY
126
    BRONX INTERNATIONAL HIGH SCHOOL
```

A lot of students in these schools are learning English, which explains the low SAT score despite the low percent of special education students.

