
MOOC Analysis-Writeup

February 7, 2018

1 Assessment and User Analysis

As online learning is getting more and more popular, MOOCs (Massive Online Open Courses) are
growing and they’re generating alot of data as a result. The produced data may be about their
users, their learning checks, or both.

When organizations analyze their assessment data, they may identify trends and patterns such
as most missed questions and identifying key modes of central tendencies for a given assessment.
They may then use that information to tweak their assessments to help their users succeed in the
future.

When organizations analyzee their user data, they may make use of certain characteristics such
where they are from to them with an adequate learning environment to help them assist with their
learning.

1.1 Summary of Results

Upon completion of this analysis, we are able to determine the following results:
11,988 users took assesments
4870 users took the High Availability, Fault Tolerance and Scalability assessment. Of the 4870,

113 users completed the assessment.
1160 users took the Implementing Backup Strategies assessment. Of the 1160, 35 users com-

pleted the assessment.
1022 took the VPC and VPC Networking assessment. Of the 1022, 75 users completed the

assessment.
1565 users took the Design and Implement S3 Solutions assessment. Of the 1565, 68 users

completed the assessment.
1862 users took the Implement Elastic Beanstalk Solution assessment, of the 1862 users, 52

users completed the assessment.
1509 Troubleshoot Multi-Tier Application assessment. Of the 1509, 40 completed the assess-

ment.
245 people have made a zero across all assessments
Roughly 81% of people would recommend this to friends
Nearly half of the users are from the United States
Roughly 84% are satisfied with the assessment they took
On average, the longest time a user took on an 24.5 minutes and that was the Troubleshoot

Multi-tier Applications assessment
On average, the shortest time a user took on an 17 minutes and that was the Implementing

Backup Strategies assessment

1

The following details the steps we took to determine the above. Please read through this
following document and it provides the methods we used to determine the above key results.

In [1]: # import data analysis libraries

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

from datetime import datetime

%matplotlib inline

display all column headers

pd.set_option("display.max_columns", None)

pd.set_option("display.max_rows", None)

Set Pandas Dataframes via relative path

events = pd.read_csv("AssessmentRealTimeEvents.csv")

score = pd.read_csv("AssessmentScore.csv")

dump = pd.read_csv("UsersDump.csv")

survey = pd.read_csv("UserSurveyResults.csv")

In [2]: # peak at events

events.head()

Out[2]: TestID assessmentname eventcode \

0 3602 High Availability, Fault Tolerance, and Scalab... STRASMNT

1 3602 High Availability, Fault Tolerance, and Scalab... VIEWASMTDIAG

2 3652 High Availability, Fault Tolerance, and Scalab... STRASMNT

3 3652 High Availability, Fault Tolerance, and Scalab... VIEWASMTDIAG

4 3707 Implement Elastic Beanstalk Solutions STRASMNT

timestamp

0 2017-07-20 12:30:31.000

1 2017-07-20 12:30:32.000

2 2017-07-20 19:01:25.000

3 2017-07-20 19:01:25.000

4 2017-07-21 00:02:41.000

In [3]: # peak at score

score.head()

Out[3]: TestId UserId assessment_name \

0 3451 1824 High Availability, Fault Tolerance, and Scalab...

1 3453 1825 High Availability, Fault Tolerance, and Scalab...

2 3450 1823 High Availability, Fault Tolerance, and Scalab...

3 3454 1826 High Availability, Fault Tolerance, and Scalab...

4 3457 1826 VPC and VPC Networking

2

score

0 6.580000

1 0.000000

2 73.699997

3 95.209999

4 100.000000

In [4]: # peak at survey

survey.head()

Out[4]: TestID question \

0 3527 Please rate this assessment from one to five, ...

1 3527 What did you love about Cloud Assessments and ...

2 3527 Why did you rate it the way you did?

3 3527 Did you understand what was expected of you (w...

4 3527 Was the skill level appropriate for what we de...

answer

0 5

1 i would love to see my skills

2 8

3 yes

4 9

In [5]: # peak at dump

dump.head()

Out[5]: UserId country certifications

0 1 No Value Provided []

1 1011 Texas Republic ["aws_developer", "aws_devops_engineer"]

2 1009 United States ["aws_developer"]

3 1016 United States ["aws_developer"]

4 1024 No Value Provided []

In [6]: score = score.dropna() # drops null values in the score df and reassigns it to score

1.2 To start off, we’ll perform the following:

Filter the existing ‘score’ df to see how many users scored within a certain range across all assess-
ments.

Calculate the percentage of people of made a score within a given range out of all the scores.

In [7]: score_0 = score[score["score"] == 0]

score_0.shape[0]

Out[7]: 245

In [8]: score_0.shape[0] / score.shape[0]

3

Out[8]: 0.4246100519930676

In [9]: score_l50 = score[(score["score"] < 50) & (score["score"] > 0)]

score_l50.shape[0]

Out[9]: 90

In [10]: score_l50.shape[0] / score.shape[0]

Out[10]: 0.1559792027729636

In [11]: score_fs = score[(score["score"] < 70) & (score["score"] >= 50)]

score_fs.shape[0]

Out[11]: 52

In [12]: score_fs.shape[0] / score.shape[0]

Out[12]: 0.09012131715771231

In [13]: score_c = score[(score["score"] < 80) & (score["score"] >= 70)]

score_c.shape[0]

Out[13]: 32

In [14]: score_c.shape[0] / score.shape[0]

Out[14]: 0.05545927209705372

In [15]: score_b = score[(score["score"] < 90) & (score["score"] >= 80)]

score_b.shape[0]

Out[15]: 32

In [16]: score_b.shape[0] / score.shape[0]

Out[16]: 0.05545927209705372

In [17]: score_a = score[(score["score"] < 100) & (score["score"] >= 90)]

score_a.shape[0]

Out[17]: 50

In [18]: score_a.shape[0] / score.shape[0]

Out[18]: 0.08665511265164645

4

In [19]: score_100 = score[score["score"] == 100]

score_100.shape[0]

Out[19]: 76

In [20]: score_100.shape[0] / score.shape[0]

Out[20]: 0.1317157712305026

From the above, we see the following:
245 (~42.5%) people made a score of zero
90 (~15.6%) people made a score between 0 and 50
52 (~9%) people made a score between 50 and 70
32 (~5.5%) people made a score between 70 and 80
32 (~5.5%) people made a score between 80 and 90
50 (~8.7%) people made a score between 90 and 100
76 (~13.2%) people made a score of 100
It’s certainly alarming that almost half of the people made a score of zero across all assess-

ments.
Assuming the pass/no pass cutoff point is 80%, it is also alarming that the number of people

who made a zero is greater than the number who pass the assessment.

2 We’ll perform the following steps for some explatory statistics

Create a Box and Whisker Plot that describes the assessment scores located in the score dataframe
Calculate some additional explatory statistics beyond what the Box and Whisker Plot shows

In [21]: sns.boxplot(score["score"]);

5

In [22]: var = score["score"].var()

std = score["score"].std()

mean = score["score"].mean()

med = score["score"].median()

max = score["score"].max()

min = score["score"].min()

Q3 = np.percentile(score["score"], 75)

Q1 = np.percentile(score["score"], 25)

IQR = Q3 - Q1

Q1O = Q1 - 1.5 * IQR

Q1EO = Q1 - 3 * IQR

Q3O = Q3 + 1.5 * IQR

Q3EO = Q3 + 3 * IQR

print("The mean score is {}".format(mean))

print("The median score is {}".format(med))

print("The maximum score is {}".format(max))

print("The minimum score is {}".format(min))

print("The variance between the scores is {}".format(var))

print("The standard deviation of the squres is {}".format(std))

print("The Third Quartile is {}".format(Q3))

print("The First Quartile is {}".format(Q1))

print("The Interquartile Range is {}".format(IQR))

print("The outliers are below {}".format(Q1O))

print("The extreme outliers are below {}".format(Q1EO))

print("The outliers are above {}".format(Q3O))

print("The extreme outliers are above {}".format(Q3EO))

The mean score is 40.00133433686482

The median score is 26.67000008

The maximum score is 100.0

The minimum score is 0.0

The variance between the scores is 1688.141559245361

The standard deviation of the squres is 41.086999881292876

The Third Quartile is 84.63999939

The First Quartile is 0.0

The Interquartile Range is 84.63999939

The outliers are below -126.95999908499999

The extreme outliers are below -253.91999816999999

The outliers are above 211.599998475

The extreme outliers are above 338.55999756

Considering we are observing assessment scores, negative values and values above 100 doesn’t
make any sense. That said, for all intents and purposes, there are no outliers of any kind.

6

Remembering the fact that almost half of observations have a score of 0, it is not surprising the
first quartile is 0.

2.1 Next we’ll work on the survey dataframe by:

Inspect the question column to return an array with all of the unique questions in the column.
Filter the dataframe to return rows that contain the string regarding the likelihood the user

will recommend the assessment to friends.

In [23]: pd.unique(survey["question"])

Out[23]: array(['Please rate this assessment from one to five, five being the highest',

'What did you love about Cloud Assessments and this assessment in particular?',

'Why did you rate it the way you did?',

'Did you understand what was expected of you (was the scenario clear)?',

'Was the skill level appropriate for what we described?',

'On a scale of one to ten, how likely are you to recommend this to your friends?',

'Do you have any specific suggestions for improvements?',

'What additional features would you like to see?',

'What other types of assessments would you like to see?',

'Would you be interested in a verified micro certification?'], dtype=object)

In [24]: recommend = survey[survey.question.str.contains('On a scale of one to ten, how likely are you to recommend this to your friends?')].copy()

In [25]: recommend.head()

Out[25]: TestID question answer

5 3527 On a scale of one to ten, how likely are you t... 10

15 3527 On a scale of one to ten, how likely are you t... 10

25 3527 On a scale of one to ten, how likely are you t... 10

35 3522 On a scale of one to ten, how likely are you t... 10

45 3521 On a scale of one to ten, how likely are you t... 10

In [26]: recommend.dtypes # Returns the dtypes of a Dataframee

Out[26]: TestID int64

question object

answer object

dtype: object

In [27]: recommend["answer"] = pd.to_numeric(recommend["answer"]) # Converts the Series to `as_numeric`

In [28]: recommend.dtypes # Making sure I'm not crazy

Out[28]: TestID int64

question object

answer int64

dtype: object

7

In [29]: perec = recommend[recommend["answer"] == 10].shape[0]

perecp = round(perec / recommend.shape[0] * 100, 2)

rec9 = recommend[recommend["answer"] == 9].shape[0]

rec9p = round(rec9 / recommend.shape[0] * 100, 2)

rec8 = recommend[recommend["answer"] == 8].shape[0]

rec8p = round(rec8 / recommend.shape[0] * 100, 2)

rec7 = recommend[recommend["answer"] == 7].shape[0]

rec7p = round(rec7 / recommend.shape[0] * 100, 2)

rec6 = recommend[recommend["answer"] == 6].shape[0]

rec6p = round(rec6 / recommend.shape[0] * 100, 2)

rec5 = recommend[recommend["answer"] == 5].shape[0]

rec5p = round(rec5 / recommend.shape[0] * 100, 2)

rec4 = recommend[recommend["answer"] == 4].shape[0]

rec4p = round(rec4 / recommend.shape[0] * 100, 2)

rec3 = recommend[recommend["answer"] == 3].shape[0]

rec3p = round(rec3 / recommend.shape[0] * 100, 2)

rec2 = recommend[recommend["answer"] == 2].shape[0]

rec2p = round(rec2 / recommend.shape[0] * 100, 2)

rec1 = recommend[recommend["answer"] == 1].shape[0]

rec1p = round(rec1 / recommend.shape[0] * 100, 2)

In [30]: scale = [x for x in range(1,11)]

recscale = [rec1, rec2, rec3, rec4, rec5, rec6, rec7, rec8, rec9, perec]

In [31]: plt.bar(scale, recscale)

plt.title("Number of people by likelihood", weight = 'bold', fontsize = 15)

plt.xlabel("Recommendation Likelihood")

plt.ylabel("Number of People")

plt.grid(False)

8

In [32]: print("The number people who are extremely likely to recommend this to a friend is {} ({}%)".format(perec, perecp))

print("The number people who are most likely to recommend this to a friend is {} ({}%)".format(rec9, rec9p))

print("The number people who are really likely to recommend this to a friend is {} ({}%)".format(rec8, rec8p))

print("The number people who are kind of likely to recommend this to a friend is {} ({}%)".format(rec7, rec7p))

print("The number people who maybe recommend this to a friend is {} ({}%)".format(rec6, rec6p))

print("The number people who are indifferent to recommend this to a friend is {} ({}%)".format(rec5, rec5p))

print("The number people who are hesitant to recommend this to a friend is {} ({}%)".format(rec4, rec4p))

print("The number people who are most likely not to recommend this to a friend is {} ({}%)".format(rec3, rec3p))

print("The number people who are extremely not likely recommend this to a friend is {} ({}%)".format(rec2, rec2p))

print("The number people who are would not recommend this to a friend is {} ({}%)".format(rec1, rec1p))

The number people who are extremely likely to recommend this to a friend is 120 (80.54%)

The number people who are most likely to recommend this to a friend is 11 (7.38%)

The number people who are really likely to recommend this to a friend is 4 (2.68%)

The number people who are kind of likely to recommend this to a friend is 2 (1.34%)

9

The number people who maybe recommend this to a friend is 1 (0.67%)

The number people who are indifferent to recommend this to a friend is 2 (1.34%)

The number people who are hesitant to recommend this to a friend is 0 (0.0%)

The number people who are most likely not to recommend this to a friend is 0 (0.0%)

The number people who are extremely not likely recommend this to a friend is 1 (0.67%)

The number people who are would not recommend this to a friend is 8 (5.37%)

2.1.1 Next, we’ll inspect the dump dataframe and the unique values in the country column

In [34]: pd.unique(dump["country"])

Out[34]: array(['No Value Provided', 'Texas Republic', 'United States', 'USA', 'US',

'united states', 'Ireland', 'Ukraine', 'United Kingdom', 'Canada',

'India', 'Estados Unidos', 'Venezuela', 'venezuela', 'Mexico',

'France', 'England', 'Spain', 'United States of America', 'Brazil',

'Colombia', 'Romania', 'Argentina', 'Australia', 'UK',

'Philippines', 'New Zealand', 'Vietnam', 'australia', 'Italia',

'NIGERIA', 'Russia', 'Poland', 'Israel', 'Netherlands', 'Paraguay',

'Croatia', 'Indonesia', 'Taiwan', 'usa', 'uk', 'Scotland',

'South Africa', 'Kenya', 'Germany', 'Japan', 'USA ', 'Usa', 'japan',

'UAE', 'INDIA', 'the Netherlands', 'Netherlands ', 'Switzerland',

'Austria ', 'Russian Federation', 'Bulgaria', 'Nederland',

' Ireland', 'Denmark', 'Saudi Arabia', 'Cyprus', 'Ind', 'Sweden',

'Canda', 'Arlington', 'Harris', 'Unisted States', 'Sri Lanka',

'London', 'Belgium', 'Singapore', 'Bahrain', 'Bosnia', 'Austrsalia',

'Malaysia', 'Slovakia', 'Suomi', 'China', 'Unkted Kingdom',

'Guatemala', 'Deutschland', 'italy', 'united kingdom', 'k', 'india',

'Peru', 'Uk', 'Ecuador', 'Lithuania', 'Saudi Arabi', 'Morocco',

'Cambodia', 'Serbia', 'Moldova', 'United Arab Emirates', 'Nepal',

'Chile', 'Hong Kong SAR, China', 'Lebanon', 'united state',

'MYANMAR', 'Italy', 'U.S.A.', 'Pakistan', 'Bangladesh', 'asdfasdf',

'Jordan', 'Nigeria', 'Belarus', 'Brasil', 'Egypt', 'Kiev',

'Albania', 'france', 'Bosnia and Herzegovina', 'Austria', 'Norway',

'Espaa', 'asdf', 'Turkey', 'Greece', 'PK', 'PAKISTAN', 'germany',

'Costa Rica', 'Finland', 'sambalpur', 'Timor Leste', 'Pune',

'mexico', 'Ie', 'aaa', 'Senegal', 'United Kindom', 'us', 'Viet Nam',

'Belgique', 'Solomon Islands', 'Midlothian', 'CANADA', 'IND',

'india ', 'Macao', 'United states', 'Oman', 'egypt', 'MEXICO ', 'u',

'Portugal', 'Trinidad and Tobago'], dtype=object)

2.1.2 Using the unique values, we’ll create a mapping dictionary to clean the country column

In [35]: coumap = {

"Texas Republic" : "Texas",

"USA" : "United States",

"US" : "United States",

"united states" : "United States",

10

"No Value Provided" : np.nan,

"Texas Republic" : "United States",

"United States" : "United States",

"Ireland" : "Ireland",

"Ukraine" : "Ukraine",

"United Kingdom" : "United Kingdom",

"Canada" : "Canada",

"India" : "India",

"Estados Unidos" : "United States",

"Venezuela" : "Venezuela",

"venezuela": "Venezuela",

"Mexico" : "Mexico",

"France" : "France",

"England" : "England",

'Spain' : "Spain",

'United States of America' : "United States",

'Brazil' : "Brzail",

'Colombia' : "Columbia",

'Romania' : "Romania",

'Argentina' : "Argentina",

'Australia' : "Austrailia",

'UK' : "United Kingdom",

'Philippines' : "Philippines",

'New Zealand' : "New Zealand",

'Vietnam' : "Vietnam",

'australia' : "Austrailia",

'Italia' : "Italy",

'NIGERIA' : "Nigeria",

'Russia' : "Russia",

'Poland' : "Poland",

'Israel' : "Israel",

'Netherlands' : "Netherlands",

'Paraguay' : "Paraguay",

'Croatia' : "Croatia",

'Indonesia' : "Indonesia",

'Taiwan' : "Taiwan",

'usa' : "United States",

'uk' : "United Kingdom",

'Scotland' : "Scotland",

'South Africa' : "South Africa",

'Kenya' : "Kenya",

'Germany' : "Germany",

'Japan' : "Japan",

'USA ': "United States",

'Usa' : "United States",

'japan' : "Japan",

'UAE' : "United Arab Emirates",

'INDIA' : "India",

11

'the Netherlands' : "Netherlands",

'Netherlands ' : "Netherlands",

'Switzerland' : "Switzerland",

'Austria ' : "Austria",

'Russian Federation' : "Russia",

'Bulgaria' : "Bulgaria",

'Nederland' : "Netherlands",

' Ireland' : "Ireland",

'Denmark' : "Denmark",

'Saudi Arabia' : "Saudi Arabia",

'Cyprus' : "Cyprus",

'Ind' : "India",

'Sweden' : "Sweeden",

'Canda' : "Canada",

'Arlington' : "United States",

'Harris' : "United States",

'Unisted States' : "United States",

'Sri Lanka' : "Sri Lanka",

'London' : "London",

'Belgium' : "Belgium",

'Singapore' : "Singapore",

'Bahrain' : "Bahrain",

'Bosnia': "Bosnia and Herzegovina",

'Austrsalia' : "Austrailia",

'Malaysia' : "Malaysis",

'Slovakia' : "Slovakia",

'Suomi' : "Finland",

'China' : "China",

'Unkted Kingdom' : "United Kingdom",

'Guatemala' : "Guatemala",

'Deutschland' : "Germany",

'italy' : "Italy",

'united kingdom' : "United Kingdom",

'k' : np.nan,

'india' : "India",

'Peru' : "Peru",

'Uk' : "United Kingdom",

'Ecuador' : "Ecuador",

'Lithuania' : "Lithuania",

'Saudi Arabi' : "Saudi Arabia",

'Morocco' : "Morocco",

'Cambodia' : "Cambodia",

'Serbia' : "Serbia",

'Moldova' : "Moldova",

'United Arab Emirates' : "United Arab Emirates",

'Nepal' : "Nepal",

'Chile' : "Chile",

'Hong Kong SAR, China' : "China",

12

'Lebanon' : "Lebanon",

'united state' : "United States",

'MYANMAR' : "Myanmar",

'Italy' : "Italy",

'U.S.A.' : "United States",

'Pakistan' : "Pakistan",

'Bangladesh' : "Bangladesh",

'asdfasdf' : np.nan,

'Jordan' : "Jordan",

'Nigeria' : "Nigeria",

'Belarus' : "Belarus",

'Brasil' : "Brazil",

'Egypt' : "Egypt",

'Kiev' : "Ukraine",

'Albania' : "Albania",

'france' : "France",

'Bosnia and Herzegovina' : "Bosnia and Herzegovina",

'Austria' : "Austria",

'Norway' : "Norway",

'Espaa' : "Spain",

'asdf' : np.nan,

'Turkey' : "Turkey",

'Greece' : "Greece",

'PK' : "Pakistan",

'PAKISTAN' : "Pakistan",

'germany' : "Germany",

'Costa Rica' : "Costa Rica",

'Finland' : "Finland",

'sambalpur' : "India",

'Timor Leste' : "Timor Leste",

'Pune' : "India",

'mexico' : "Mexico",

'Ie' : "Ireland",

'aaa' : np.nan,

'Senegal' : "Senegal",

'United Kindom' : "United Kingdom",

'us' : "United States",

'Viet Nam' : "Vietnam",

'Belgique' : "Belgium",

'Solomon Islands' : "Solomon Islands",

'Midlothian' : "United States",

'CANADA' : "Canada",

'IND' : "India",

'india ' : "India",

'Macao' : "Morocco",

'United states' : "United States",

'Oman' : "Oman",

'egypt' : "Egypt",

13

'MEXICO ' : "Mexico",

'u' : np.nan,

'Portugal' : "Portugal",

'Trinidad and Tobago' : "Trinidad and Tobogo"

}

In [36]: dump["country"] = dump["country"].map(coumap) # Applying thee mapping dictionary to the column

In [37]: pd.unique(dump["country"]) #Again, making sure I'm not crazy

Out[37]: array([nan, 'United States', 'Ireland', 'Ukraine', 'United Kingdom',

'Canada', 'India', 'Venezuela', 'Mexico', 'France', 'England',

'Spain', 'Brzail', 'Columbia', 'Romania', 'Argentina', 'Austrailia',

'Philippines', 'New Zealand', 'Vietnam', 'Italy', 'Nigeria',

'Russia', 'Poland', 'Israel', 'Netherlands', 'Paraguay', 'Croatia',

'Indonesia', 'Taiwan', 'Scotland', 'South Africa', 'Kenya',

'Germany', 'Japan', 'United Arab Emirates', 'Switzerland',

'Austria', 'Bulgaria', 'Denmark', 'Saudi Arabia', 'Cyprus',

'Sweeden', 'Sri Lanka', 'London', 'Belgium', 'Singapore', 'Bahrain',

'Bosnia and Herzegovina', 'Malaysis', 'Slovakia', 'Finland',

'China', 'Guatemala', 'Peru', 'Ecuador', 'Lithuania', 'Morocco',

'Cambodia', 'Serbia', 'Moldova', 'Nepal', 'Chile', 'Lebanon',

'Myanmar', 'Pakistan', 'Bangladesh', 'Jordan', 'Belarus', 'Brazil',

'Egypt', 'Albania', 'Norway', 'Turkey', 'Greece', 'Costa Rica',

'Timor Leste', 'Senegal', 'Solomon Islands', 'Oman', 'Portugal',

'Trinidad and Tobogo'], dtype=object)

In [38]: dump = dump.dropna() # Drop all null values

In [39]: dump["country"].value_counts() # Returns the number of times a single country appears in the column

Out[39]: United States 435

India 233

United Kingdom 73

Austrailia 32

Canada 23

Germany 19

Spain 17

Ireland 12

Mexico 12

Ukraine 11

Netherlands 11

Brzail 10

Poland 8

Russia 7

France 7

Philippines 6

United Arab Emirates 6

Brazil 6

14

Romania 6

Israel 5

Venezuela 5

China 5

Pakistan 5

Malaysis 5

Vietnam 5

Indonesia 4

Turkey 4

South Africa 4

Singapore 4

Italy 4

Bangladesh 4

Japan 4

Croatia 4

New Zealand 4

Saudi Arabia 3

Austria 3

Serbia 3

Denmark 3

Belgium 3

England 3

Argentina 3

Switzerland 3

Nigeria 2

Bahrain 2

Slovakia 2

Greece 2

Morocco 2

Scotland 2

Moldova 2

Lebanon 2

Cyprus 2

Finland 2

Bosnia and Herzegovina 2

Columbia 2

Kenya 2

Sweeden 2

Peru 2

Egypt 2

Timor Leste 1

Oman 1

Guatemala 1

Nepal 1

Cambodia 1

Portugal 1

Ecuador 1

Paraguay 1

15

London 1

Chile 1

Senegal 1

Sri Lanka 1

Costa Rica 1

Trinidad and Tobogo 1

Norway 1

Taiwan 1

Bulgaria 1

Myanmar 1

Albania 1

Solomon Islands 1

Lithuania 1

Belarus 1

Jordan 1

Name: country, dtype: int64

In [40]: dump["country"].value_counts().sum() # Calculates sum of users in every country listed in the Series

Out[40]: 1079

In [41]: dump["country"].value_counts() / dump["country"].value_counts().sum()

Returns the percentage of users in a single country

Out[41]: United States 0.403151

India 0.215941

United Kingdom 0.067655

Austrailia 0.029657

Canada 0.021316

Germany 0.017609

Spain 0.015755

Ireland 0.011121

Mexico 0.011121

Ukraine 0.010195

Netherlands 0.010195

Brzail 0.009268

Poland 0.007414

Russia 0.006487

France 0.006487

Philippines 0.005561

United Arab Emirates 0.005561

Brazil 0.005561

Romania 0.005561

Israel 0.004634

Venezuela 0.004634

China 0.004634

Pakistan 0.004634

Malaysis 0.004634

Vietnam 0.004634

16

Indonesia 0.003707

Turkey 0.003707

South Africa 0.003707

Singapore 0.003707

Italy 0.003707

Bangladesh 0.003707

Japan 0.003707

Croatia 0.003707

New Zealand 0.003707

Saudi Arabia 0.002780

Austria 0.002780

Serbia 0.002780

Denmark 0.002780

Belgium 0.002780

England 0.002780

Argentina 0.002780

Switzerland 0.002780

Nigeria 0.001854

Bahrain 0.001854

Slovakia 0.001854

Greece 0.001854

Morocco 0.001854

Scotland 0.001854

Moldova 0.001854

Lebanon 0.001854

Cyprus 0.001854

Finland 0.001854

Bosnia and Herzegovina 0.001854

Columbia 0.001854

Kenya 0.001854

Sweeden 0.001854

Peru 0.001854

Egypt 0.001854

Timor Leste 0.000927

Oman 0.000927

Guatemala 0.000927

Nepal 0.000927

Cambodia 0.000927

Portugal 0.000927

Ecuador 0.000927

Paraguay 0.000927

London 0.000927

Chile 0.000927

Senegal 0.000927

Sri Lanka 0.000927

Costa Rica 0.000927

Trinidad and Tobogo 0.000927

Norway 0.000927

17

Taiwan 0.000927

Bulgaria 0.000927

Myanmar 0.000927

Albania 0.000927

Solomon Islands 0.000927

Lithuania 0.000927

Belarus 0.000927

Jordan 0.000927

Name: country, dtype: float64

2.2 We’ll return to working on the survey dataframe by:

Inspect the question column to return an array with all of the unique questions in the column.
Filter the dataframe to return rows that contain the string asking the user to rate the assess-

ment.

In [42]: rate = survey[survey.question.str.contains('Please rate this assessment from one to five, five being the highest')].copy()

In [43]: rate.head()

Out[43]: TestID question answer

0 3527 Please rate this assessment from one to five, ... 5

10 3527 Please rate this assessment from one to five, ... 5

20 3527 Please rate this assessment from one to five, ... 5

30 3522 Please rate this assessment from one to five, ... 5

40 3521 Please rate this assessment from one to five, ... 5

In [44]: rate.dtypes # Check the dtypes of the rate dataframe

Out[44]: TestID int64

question object

answer object

dtype: object

In [45]: rate["answer"] = pd.to_numeric(rate["answer"]) # Converting the answer Series to numeric

In [46]: rate.dtypes # Making sure I'm not crazy

Out[46]: TestID int64

question object

answer int64

dtype: object

In [47]: rate["answer"].mean()

Out[47]: 4.624161073825503

In [48]: rate1p = round(rate[rate["answer"] == 1].shape[0] / rate.shape[0] * 100, 2)

rate1 = rate[rate["answer"] == 1].shape[0]

18

rate2p = round(rate[rate["answer"] == 2].shape[0] / rate.shape[0] * 100, 2)

rate2 = rate[rate["answer"] == 2].shape[0]

rate3p = round(rate[rate["answer"] == 3].shape[0] / rate.shape[0] * 100, 2)

rate3 = rate[rate["answer"] == 3].shape[0]

rate4p = round(rate[rate["answer"] == 4].shape[0] / rate.shape[0] * 100, 2)

rate4 = rate[rate["answer"] == 4].shape[0]

rate5p = round(rate[rate["answer"] == 5].shape[0] / rate.shape[0] * 100, 2)

rate5 = rate[rate["answer"] == 5].shape[0]

In [49]: print("The number of people who rated this assigmnet a 5 is {} ({}%)".format(rate5, rate5p))

print("The number of people who rated this assigmnet a 4 is {} ({}%)".format(rate4, rate4p))

print("The number of people who rated this assigmnet a 3 is {} ({}%)".format(rate3, rate3p))

print("The number of people who rated this assigmnet a 2 is {} ({}%)".format(rate2, rate2p))

print("The number of people who rated this assigmnet a 1 is {} ({}%)".format(rate1, rate1p))

The number of people who rated this assigmnet a 5 is 125 (83.89%)

The number of people who rated this assigmnet a 4 is 11 (7.38%)

The number of people who rated this assigmnet a 3 is 3 (2.01%)

The number of people who rated this assigmnet a 2 is 1 (0.67%)

The number of people who rated this assigmnet a 1 is 9 (6.04%)

In [50]: rscale = [x for x in range(1,6)]

numpeo = [rate1, rate2, rate3, rate4, rate5]

In [51]: print(rscale, numpeo) # Making sure the list compresion and the list declaration worked

[1, 2, 3, 4, 5] [9, 1, 3, 11, 125]

In [52]: plt.bar(rscale, numpeo)

plt.xlabel("Rating")

plt.ylabel("Number of People")

plt.title("Number of ratings by rating", weight = 'bold', fontsize = 15)

plt.grid(False)

19

2.2.1 We’re returning to the score dataframe and doing the following:

Filter down the assessment_name column to return the rows of the score dataframe containing
the name of each assessment and assigning that to its own dataframe

Create a Box and Whisker Plot that describes the each assessment scores located in the newly
created dataframes

Use the .describe() method to display some basic statistics for the score column of each
newly created dataframes

In [53]: pd.unique(score["assessment_name"])

Out[53]: array(['High Availability, Fault Tolerance, and Scalability',

'VPC and VPC Networking', 'Design and Implement S3 Solutions',

'Troubleshoot Multi-Tier Applications',

'Implement Elastic Beanstalk Solutions',

'Implementing Backup Strategies'], dtype=object)

In [54]: HAFTS = score[score.assessment_name.str.contains('High Availability, Fault Tolerance, and Scalability')].copy()

VPC = score[score.assessment_name.str.contains('VPC and VPC Networking', 'Design and Implement S3 Solutions')].copy()

TMMA = score[score.assessment_name.str.contains('Troubleshoot Multi-Tier Applications')].copy()

IEBS = score[score.assessment_name.str.contains('Implement Elastic Beanstalk Solutions')].copy()

20

IBS = score[score.assessment_name.str.contains('Implementing Backup Strategies')].copy()

DIS = score[score.assessment_name.str.contains('Design and Implement S3 Solutions')].copy()

In [55]: sns.boxplot(HAFTS["score"]);

In [56]: HAFTS["score"].describe()

Out[56]: count 227.000000

mean 23.962995

std 38.595826

min 0.000000

25% 0.000000

50% 0.000000

75% 61.050001

max 100.000000

Name: score, dtype: float64

In [57]: sns.boxplot(VPC["score"]);

21

In [58]: VPC["score"].describe()

Out[58]: count 86.000000

mean 56.860000

std 42.348337

min 0.000000

25% 0.000000

50% 70.830002

75% 98.542500

max 100.000000

Name: score, dtype: float64

In [59]: sns.boxplot(TMMA["score"]);

22

In [60]: TMMA["score"].describe()

Out[60]: count 45.000000

mean 55.586222

std 36.211001

min 0.000000

25% 24.000000

50% 63.540001

75% 89.989998

max 99.989998

Name: score, dtype: float64

In [61]: sns.boxplot(IEBS["score"]);

23

In [62]: IEBS["score"].describe()

Out[62]: count 93.000000

mean 51.884624

std 37.575058

min 0.000000

25% 20.840000

50% 50.840000

75% 92.500000

max 100.000000

Name: score, dtype: float64

In [63]: sns.boxplot(IBS["score"]);

24

In [64]: IBS["score"].describe()

Out[64]: count 57.000000

mean 32.961929

std 35.945481

min 0.000000

25% 0.000000

50% 23.340000

75% 68.889999

max 100.000000

Name: score, dtype: float64

In [65]: sns.boxplot(DIS["score"]);

25

In [66]: DIS["score"].describe()

Out[66]: count 69.000000

mean 51.387391

std 39.232317

min 0.000000

25% 13.340000

50% 54.139999

75% 90.349998

max 100.000000

Name: score, dtype: float64

SELECT z.assessmentname as "Assessment",

AVG(z.elapsedtime)/60 as "Average Minutes"

FROM

(

SELECT e1."TestID",

e1.assessmentname,

e1.eventcode,

e1.timestamp,

e2."TestID",

e2.eventcode,

e2.timestamp,

EXTRACT('second' FROM e2.timestamp::TIMESTAMP - e1.timestamp::TIMESTAMP) + 60 * EXTRACT('minute' FROM e2.timestamp::TIMESTAMP - e1.timestamp::TIMESTAMP) AS "elapsedtime"

FROM public."Events" AS e1

26

LEFT JOIN public."Events" AS e2 on e1."TestID" = e2."TestID"

WHERE e1.eventcode = 'STRASMNT' and e2.eventcode = 'CMPLASMNT'

ORDER BY e1."TestID"

) z

GROUP BY assessmentname

In [67]: pd.read_csv("average_time.csv")

Out[67]: Assessment \

0 Implementing Backup Strategies

1 High Availability, Fault Tolerance, and Scalab...

2 VPC and VPC Networking

3 Design and Implement S3 Solutions

4 Troubleshoot Multi-Tier Applications

5 Implement Elastic Beanstalk Solutions

Average Time Taken (in minutes)

0 17.077143

1 19.807670

2 20.150000

3 19.602206

4 26.361250

5 18.618590

SELECT s."TestId",

s."UserId",

s."assessment_name",

s."score",

u."question",

u."answer",

d."country",

d."certifications"

FROM public."Score" s

INNER JOIN public."Survey" u ON s."TestId" = u."TestID"

INNER JOIN public."Dump" d ON s."UserId" = d."UserId"

WHERE s.score >= 80

AND u.question ILIKE '%scale of one to ten%'

AND u.answer ILIKE '10'

AND d.country ILIKE 'U%S%A'

AND d.certifications ILIKE '%aws%'

In [68]: pd.read_csv("score_and_perf_US_aws.csv")

Out[68]: TestId UserId assessment_name score \

0 3894 1809 VPC and VPC Networking 100

question answer country \

0 On a scale of one to ten, how likely are you t... 10 USA

27

certifications

0 [aws_solutions_architect]

SELECT e1.assessmentname,

COUNT(e1.assessmentname)

FROM public."Events" as e1

LEFT JOIN public."Events" AS e2 on e1."TestID" = e2."TestID"

WHERE e1.eventcode = 'STRASMNT' and e2.eventcode = 'CMPLASMNT'

GROUP BY e1.assessmentname

In [70]: pd.read_csv('complete_assessments.csv')

Out[70]: assessmentname count

0 Implementing Backup Strategies 35

1 High Availability, Fault Tolerance, and Scalab... 113

2 VPC and VPC Networking 75

3 Design and Implement S3 Solutions 68

4 Troubleshoot Multi-Tier Applications 40

5 Implement Elastic Beanstalk Solutions 52

28

	Assessment and User Analysis
	Summary of Results
	To start off, we'll perform the following:

	We'll perform the following steps for some explatory statistics
	Next we'll work on the survey dataframe by:
	Next, we'll inspect the dump dataframe and the unique values in the country column
	Using the unique values, we'll create a mapping dictionary to clean the country column

	We'll return to working on the survey dataframe by:
	We're returning to the score dataframe and doing the following:

